
South Wailea, Maui, Hawaii

Annual Erosion Hazard Rates

	135	-0.469
headlands divide the study area shoreline into several	136	-0.451
embayments with calcareous sand beaches.		
	137	-0.430
Beginning in the south, Kaawa Beach (transects 130-132) has	138	-0.400
experienced moderate erosion since 1931 with an average	139	-0.367
AEHR of -0.74 ft/yr. Pepeiaolepo Beach (transects 133 - 158)	140	-0.345
has been slightly to moderately erosive since 1931 with an	141	-0.327
average AEHR of -0.3 ft/yr. On the north side of a short	142	-0.245
headland separating the two beaches, Poolenalena Beach	143	-0.135
(transects 159 - 175) has experienced moderate to high rates		
of erosion (up to -1.3 ft/yr at transect 172) with an average	144	-0.097
AEHR of -1.0 ft/yr. Palauea Beach (transects 182 - 199) has	145	-0.133
experienced low to moderate erosion with an average AEHR	146	-0.191
of -0.4 ft/yr. Polo Beach (transects 206 - 220) has been	147	-0.233
relatively stable to slightly erosive since 1931 with an	148	-0.254
average AEHR of -0.1 ft/yr.	149	-0.265
average Aleman en agen	150	-0.282
HISTORICAL SHORELINES	151	-0.312
	152	-0.343
	153	-0.370
—— 1931 T-sheet	154	-0.384
Nov 1949	155	-0.395
Oct 1960	156	-0.412
— May 1963	157	-0.439
—— Mar 1975	158	-0.445
—— Jul 1987	159	-0.790
—— Mar 1988	160	-0.766
Nov 1992	161	-0.780
	162	-0.839
May 1997		
Apr 2007	163	-0.924
	164	-0.998
Erosion rate measurement locations	165	-1.038
(shore normal transects)	166	-1.045
	167	-1.031
Historical beach positions, color	168	-1.021
coded by year, are determined using		
ortho-rectified and georeferenced aerial	169	-1.037
photographs and National Ocean Survey	170	-1.108
(NOS) topographic survey charts. The	171	-1.210
low water mark is used as the historical	172	-1.320
shoreline, or shoreline change reference feature (SCRF).	173	-1.272
	174	-1 213
For situations in which there is coastal	174	-1.213
For situations in which there is coastal armoring or rocky shoreline seaward of	175	-1.167
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is	175 176	-1.167 -0.372
For situations in which there is coastal armoring or rocky shoreline seaward of	175	-1.167
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and	175 176	-1.167 -0.372
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean	175 176 177	-1.167 -0.372 -0.372
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line.	175 176 177 178 179	-1.167 -0.372 -0.372 -0.353 0.001
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to	175 176 177 178 179 180	-1.167 -0.372 -0.372 -0.353 0.001 -0.046
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along	175 176 177 178 179 180 181	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20	175 176 177 178 179 180 181 182	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along	175 176 177 178 179 180 181 182 183	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987	175 176 177 178 179 180 181 182	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the	175 176 177 178 179 180 181 182 183	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is	175 176 177 178 179 180 181 182 183 183 184 185	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is	175 176 177 178 179 180 181 182 183 184 185 185	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.	175 176 177 178 179 180 181 182 183 184 185 185 186 187	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is	175 176 177 178 179 180 181 182 183 184 185 186 185 186 187 188	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.	175 176 177 178 179 180 181 182 183 184 185 186 185 186 187 188 189	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510 -0.465
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.	175 176 177 178 179 180 181 182 183 184 185 186 185 186 187 188	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.	175 176 177 178 179 180 181 182 183 184 185 186 185 186 187 188 189	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510 -0.465
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.	175 176 177 178 179 180 181 182 183 184 185 186 185 186 187 188 189 190	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510 -0.465 -0.436
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.	175 176 177 178 179 180 181 182 183 184 185 186 185 186 187 188 189 190 191	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 191 192 193	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.431
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.431 -0.425
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.425 -0.416
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.425 -0.416 -0.407
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline change rates (ft/yr) at each transect	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.666 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.425 -0.425 -0.416 -0.407 -0.370
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 195 196 197 198	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.076 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.431 -0.425 -0.429 -0.429 -0.421 -0.425 -0.416 -0.407 -0.303
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.666 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.425 -0.425 -0.416 -0.407 -0.370
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 195 196 197 198	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.076 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.431 -0.425 -0.429 -0.429 -0.421 -0.425 -0.416 -0.407 -0.303
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 195 196 197 198 199	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.451 -0.465 -0.427 -0.429 -0.429 -0.425 -0.425 -0.416 -0.407 -0.370 -0.303 -0.303 -0.212
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.416 -0.425 -0.416 -0.407 -0.303 -0.303 -0.212 -0.007 -0.003
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.427 -0.429 -0.429 -0.421 -0.425 -0.416 -0.425 -0.416 -0.407 -0.303 -0.303 -0.212 -0.007 -0.003 -0.004
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline sthrough time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary,	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.416 -0.425 -0.416 -0.407 -0.303 -0.303 -0.212 -0.007 -0.003 -0.004 -0.013
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 192 193 194 195 196 197 198 199 200 201 201 202 203 203 204	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.425 -0.416 -0.425 -0.416 -0.425 -0.416 -0.303 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 192 193 194 195 196 197 198 199 200 201 202 203 204 205	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.421 -0.425 -0.425 -0.416 -0.425 -0.416 -0.425 -0.416 -0.370 -0.303 -0.212 -0.007 -0.003 -0.004 -0.0015 -0.010
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 193 194 195 196 197 198 199 200 201 202 203 204 205 206	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.5010 -0.0011
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 192 193 194 195 196 197 198 199 200 201 202 203 204 205	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.421 -0.425 -0.425 -0.416 -0.425 -0.416 -0.425 -0.416 -0.370 -0.303 -0.212 -0.007 -0.003 -0.004 -0.0015 -0.010
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Carcetion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline through time are used to calculate shoreline change rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 193 194 195 196 197 198 199 200 201 202 203 204 205 206	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.5010 -0.0011
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Calculate shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-perpandie graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207	-1.167 -0.372 -0.372 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.431 -0.425 -0.425 -0.427 -0.429 -0.431 -0.425 -0.431 -0.425 -0.431 -0.425 -0.431 -0.370 -0.303 -0.212 -0.007 -0.003 -0.004 -0.015 -0.010 -0.011 0.078
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline transects (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-perpendicular transect. Margaph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study area. The rates are smoothed alongshore using a	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.431 -0.425 -0.416 -0.425 -0.416 -0.407 -0.370 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.003 -0.015 -0.010 -0.015 -0.010
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. Accretion Rate Erosion Rate Historical shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline transects (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study area. The rates are smoothed alongshore using a 1-3-5-3-1 technique to normalize rate differences on 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.431 -0.425 -0.416 -0.427 -0.370 -0.370 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.003 -0.015 -0.010 -0.011 0.078 0.053 -0.017 -0.027
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. Accretion Rate Erosion Rate Historical shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study ara. The rates are smoothed alongshore using a 1-3-5-3-1 technique to normalize rate differences on adjacent transects. For more information on erosion 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210 211	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.429 -0.431 -0.425 -0.431 -0.425 -0.416 -0.407 -0.370 -0.370 -0.303 -0.212 -0.007 -0.007 -0.003 -0.015 -0.010 -0.015 -0.010 -0.015 -0.010 -0.015 -0.010 -0.015 -0.010
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. Accretion Rate Accretion Rate Erosion Rate Historical shoreline positions are measured every 66 ft along the shoreline the shoreline through time are used to calculate shoreline strough time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-perpendicular transects. Changes in the position. Approximately every fffth transect and bar of the graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fffth transect and bar of the graph. Red bars on the graph indicate a trend of accretion. Approximately every where. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study area. The rates are smoothed alongshore using a 1.3-5.3-1 technique to normalize rate differences on adjacent transects. For more information on erosion rate methods and results see: 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210 211 212	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.416 -0.407 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.003 -0.015 -0.010 -0.011 0.078 0.053 -0.017 -0.027 -0.048 -0.041
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. Accretion Rate Erosion Rate Historical shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shoreline through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study ara. The rates are smoothed alongshore using a 1-3-5-3-1 technique to normalize rate differences on adjacent transects. For more information on erosion 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210 211 212 213	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.431 -0.425 -0.431 -0.425 -0.416 -0.407 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.003 -0.015 -0.010 -0.015 -0.010 -0.015 -0.012
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation. Ihre is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210 211 212	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.416 -0.407 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.007 -0.003 -0.015 -0.010 -0.011 0.078 0.053 0.017 -0.027 -0.048 -0.041
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation. If the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 201 202 203 204 205 206 207 208 209 210 211 212 213	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.566 -0.510 -0.465 -0.436 -0.427 -0.429 -0.431 -0.425 -0.431 -0.425 -0.416 -0.407 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.303 -0.212 -0.007 -0.003 -0.015 -0.010 -0.015 -0.010 -0.015 -0.012
For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. ANNUAL EROSION HAZARD RATES (AEHR) Calculate shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline change rates (ft/yr) at each transect location. Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere. The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study area. The rates are smoothed alongshore using a 1-3-5-3-1 technique to normalize rate differences on adjacent transects. For more information on erosion rate methods and results see: http://www.soest.hawaii.edu/coasts/erosion/index.php Genz*, A.S., Frazer, L.N., and Fletcher, C.H. (2009) Toward parsimony in shoreline change prediction (II):	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214	-1.167 -0.372 -0.373 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.612 -0.465 -0.436 -0.427 -0.429 -0.431 -0.425 -0.416 -0.427 -0.429 -0.431 -0.425 -0.416 -0.407 -0.370 -0.303 -0.212 -0.007 -0.003 -0.015 -0.010 -0.011 0.078 0.053 0.017 -0.027 -0.048 -0.041 -0.027 -0.048 -0.041 -0.012 -0.006
 For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation. If the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line. Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty. 	175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215	-1.167 -0.372 -0.373 -0.353 0.001 -0.046 -0.076 -0.076 -0.300 -0.404 -0.527 -0.606 -0.612 -0.612 -0.465 -0.436 -0.427 -0.429 -0.429 -0.429 -0.429 -0.421 -0.425 -0.416 -0.407 -0.303 -0.212 -0.004 -0.013 -0.015 -0.004 -0.015 -0.010 -0.015 -0.010 -0.015 -0.010 -0.015 -0.015 -0.010 -0.015 -0.015 -0.010 -0.015 -0.015 -0.010 -0.015 -0.010 -0.015 -0.027 -0.048 -0.041 -0.041