Kealia Pond, Maui, Hawaii **Annual Erosion Hazard Rates**

1680 East West Rd., Honolulu, HI 96822, U.S.A 2011

Kealia Pond

10 mi

RANSECT	AEHR (ft/yr)	TRANSECT	AEHR (ft/yr)
812	-0.536	849	-0.518
813	-0.588	850	-0.468
814	-0.626	851	-0.378
815	-0.656	852	-0.289
816	-0.681	853	-0.242
817	-0.695	854	-0.248
818	-0.702	855	-0.289
819	-0.701	856	-0.319
820	-0.692	857	-0.322
821	-0.667	858	-0.323
822	-0.630	859	-0.334
823	-0.589	860	-0.346
824	-0.545	861	-0.354
825	-0.511	862	-0.372
826	-0.490	863	-0.389
827	-0.496	864	-0.378
828	-0.545	865	-0.333
829	-0.627	866	-0.320
830	-0.671	867	-0.355
831	-0.667	868	-0.394
832	-0.639	869	-0.404
833	-0.626	870	-0.461
834	-0.625	871	-0.559
835	-0.636	872	-0.625
836	-0.672	873	-0.565
837	-0.729	874	-0.472
838	-0.755	875	-0.441
839	-0.738	876	-0.474
840	-0.697	877	-0.529
841	-0.640	878	-0.546
842	-0.577	879	-0.542
843	-0.537	880	-0.542
844	-0.513	881	-0.532
845	-0.507	882	-0.503
846	-0.504	883	-0.459
847	-0.521	884	-0.410
848	-0.532	885	-0.341

HISTORICAL SHORELINES

1910	T-sheet
Feb	1950
Nov	1949
Oct	1960
Mar	1975
Jul	1987
Mar	1988
May	1997
April	2007

— Erosion rate measurement locations (shore normal transects)

Historical beach positions, color coded by year, are determined using ortho-rectified and georeferenced aerial photographs and National Ocean Survey (NOS) topographic survey charts. The low water mark is used as the historical shoreline, or shoreline change reference feature (SCRF).

For situations in which there is coastal armoring or rocky shoreline seaward of any vegetation, the vegetation line is drawn along the seaward side of the rock or armoring. If there is no sandy beach in these areas, both the vegetation line and the SCRF are delineated along the mean high water line.

Movement of the SCRF is used to calculate erosion rates along shore-normal transects spaced every 20 m (66 ft) along the shoreline. The 1987 SCRF is not used in the calculation of the Annual Erosion Hazard Rate (AEHR). It is used in determining seasonal uncertainty.

AREA DESCRIPTION

The Kealia Pond study area (transects 812 – 921) encompasses the west half of Maalaea Bay Beach fronting Kealia Pond and North Kihei Road. The area is exposed to south swells in summer months. Easterly trade winds blow offshore in this area year-round. The Kealia study area has experienced low to moderate erosion rates since 1910, with an average AEHR of -0.5 ft/yr.

RANSECT	AEHR (ft/yr)
886	-0.248
887	-0.201
888	-0.272
889	-0.375
890	-0.477
891	-0.528
892	-0.543
893	-0.562
894	-0.617
895	-0.620
896	-0.570
897	-0.509
898	-0.483
899	-0.469
900	-0.465
901	-0.474
902	-0.496
903	-0.514
904	-0.526
905	-0.540
906	-0.547
907	-0.555
908	-0.584
909	-0.642
910	-0.657
911	-0.660
912	-0.640
913	-0.584
914	-0.457
915	-0.365
916	-0.348
917	-0.366
918	-0.367
919	-0.364
920	-0.367
921	-0.372

ANNUAL EROSION HAZARD RATES (AEHR)

Accretion Rate Erosion Rate

Historical shoreline positions are measured every 66 ft along the shoreline. These sites are denoted by yellow shore-perpendicular transects. Changes in the position of the shorelines through time are used to calculate shoreline change rates (ft/yr) at each transect location.

Annual erosion hazard rates (AEHR) are shown on the shore-parallel graph. Red bars on the graph indicate a trend of beach erosion, while blue bars indicate a trend of accretion. Approximately every fifth transect and bar of the graph is numbered. Where necessary, transects have been purposely deleted to maintain consistent along-shore spacing. As a result transect numbering is not consecutive everywhere.

The Single Transect (ST) method (Genz et al., 2009) is used to calculate erosion hazard rates for the study area. The rates are smoothed alongshore using a 1-3-5-3-1 technique to normalize rate differences on adjacent transects. For more information on erosion rate methods and results see: http://www.soest.hawaii.edu/coasts/erosion/index.php

Genz*, A.S., Frazer, L.N., and Fletcher, C.H. (2009) Toward parsimony in shoreline change prediction (II): Applying basis function methods to real and synthetic data. Journal of Coastal Research, vol. 25, no. 2: 380-392.